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We introduce an imprecise probability model for general interaction games based on the Dirichlet family of mul-

tivariate probability distributions. In order to deal with the lack of evidence (ex-ante information), an ambiguity averse 

attitude of the players is incorporated into the payoff function. The existence of an ambiguity averse Nash equilibrium 

for the N – stage game is established as a classical result, composed of individual Nash equilibria for each separate 

round in the repeated game. The existence of a common belief about the probability distributions is an essential assump-

tion for the analysis. In addition, further research directions are suggested.  
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INTRODUCTION 
 

Game theory is a mathematical approach to 

interactive decision-making. To participate in a 

game means to investigate and act, separately or 

jointly, to achieve the most favourable outcome, 

typically in uncertain and complex environments. 

Each player, acting in accordance to some rules and 

information structure, tries to maximize the personal 

gain expressed by some payoff function. Whether 

best options will be sought for depends upon nu-

merous factors such as situation awareness, individ-

ual preferences, abilities, beliefs and their consisten-

cy, the level of confrontation etc. A successful game 

model should incorporate all relevant components 

into a single operational structure. 

Games formalize interactions in many ways. 

In a population of players, there are different situa-

tions in which players’ acts are intertwined. The 

characteristics of their interaction depend not only of 

the individual set of strategy and the payoff func-

tion, but also of the entire strategy profile of the 

population. Circumstances in which players are con-

strained to choosing a single action (or choose from 

a set of available actions) when interacting within a 

certain subset of players from the population, give 

rise to local interaction games [1]. A generalized 

class of interaction games was defined by Morris 

[2], of which local interaction games and other more 

specialized classes of games (such as games of in-

complete information and random matching games), 

can be viewed as special cases. This generalization 

enables a unified approach in the analysis of the in-

corporated classes of games, as well as a new insight 

of the problems arising in different categories of 

models that can occur in these classes. 

In an incomplete information game, players 

are uncertain about the environment that they are in. 

A player (or a type of players) is uncertain about the 

opposing player or type, which can be expressed by 

saying that each player is one of a large set of possi-

ble types, and the type profile for all players is 

drawn from some distribution. A player in a random 

matching game is uncertain about who the opponent 

is, while in local interaction games, the player faces 

a distribution over the actions of some nearby oppo-

nents. These three classes of games share the feature 

that each player (or player type) tends to choose an 

action that is a best response to a distribution of his 

opponents’ actions [3]. 

In describing situations that reflect uncertainty 

about future events or outcomes, the classical prob-



N. Serafimova, D. Dimovski 

Contributions, Sec. Nat. Math. Biotech. Sci., MASA, 41 (1), 57–65 (2020) 

58 

abilistic models as defined by Kolmogorov are the 

usual choice. These models incorporate values 

which precisely estimate the uncertainty involved 

through an appropriate additive probability measure, 

without losing any information in the process. Mu-

tually disjunctive elementary events are defined with 

probabilities expressed precisely by a number from 

the interval [0,1], with a request for unique previ-

sions and conditional probabilities (for the non-zero 

probability events) to be determined. But in real de-

cision situations, there is only limited information 

about probability distributions, which associates de-

cision analysis with large uncertainty. It is very of-

ten the case that the probabilities of relevant events 

are ambiguous and precise values are impossible to 

define. Hence, the fulfillment of the requirements 

from the classical probability theory that arise from 

the additivity axiom is difficult and can lead to una-

voidable measuring mistakes, incomplete statistical 

data, conflicting evidence and other problems, espe-

cially in situations where the factor of subjectivity is 

strong. As a result, the strict and highly demanding 

conditions of the classical probability calculus can 

not be considered appropriate for describing the 

problem when based on limited information. 

To alleviate these difficulties, the precision 

requests concerning probabilities can be weakened 

to allow imprecise expression of individual proba-

bilities. Imprecise probability is an extension and 

generalization of precise probability. Many concepts 

of precise probability theory can appropriately be 

generalized to imprecise probabilities, which ex-

press ‘uncertainty about the uncertainty’ or uncer-

tainty of second order. These concepts allow over-

coming the weaknesses of the traditional statistical 

approach and the often unmotivated assumptions for 

the applied functional forms of probability distribu-

tions. The imprecise probability models are needed in 

the inference processes when information is rare, un-

clear or conflicted, such is the situation in many real 

problems. In this sense, they can be considered as an 

essential step towards realistic decision making.  

Game theory deals with the problem of uncer-

tainty through applying the formal framework of 

Bayesian games. Still, its practical application is 

limited by the fact that quite often, the uncertainty is 

too complex to be adequately described by a classi-

cal, precise probability distribution. Simply applying 

tools from classical game theory to situations of 

complex uncertainty with only partial information 

about the current states of nature, could easily lead 

to wrong conclusions. 

This paper presents a model for a  particular 

class of games that are known as interaction games, as 

defined by Morris [2], with additional considerations 

for the element of uncertainty about the states of nature 

that are expressed through a Bayesian imprecise prob-

ability model. The Bayesian approach usually assumes 

a prior Dirichlet distribution on the state space and 

makes inferences by conditioning the prior distribution 

to the observed data. One of the reasons for assuming a 

Dirichlet distribution is its computational simplicity, 

due to the fact that it is a conjugate density function to 

the multinomial distribution. Therefore, the posterior 

density will be also Dirichlet, with parameters updated 

according to the observations. 

In addition, ambiguity aversion of players is 

assumed. An event is ambiguous when the player 

does not know its probability. Ambiguity aversion is 

simply a preference of the known over the unknown. 

Player’s ambiguity attitude can be described upon 

defining a set of probability distributions over the 

set of all possible outcomes (states of the world). 

Then, ambiguity neutrality is expressed by indiffer-

ence between all distribution mixtures in this set. 

Ambiguity aversion is exhibited if the player strictly 

prefers to restrict over some subset of these distribu-

tions. Conversely, the player exhibits a liking of 

ambiguity if strictly prefers the original distributions 

to some mixture over them. 

The presented model is based on a repeated 

game structure, where a finite stage game is played 

multiple times (more precisely, there is a finite repeti-

tion of the same stage game). A usual convention 

holds - players know what all other agents did in the 

previous iterations, but have no knowledge of their 

moves in the current iteration. In this sense, it is an 

imperfect information game with perfect recall. The 

difference from classical models here is that the set of 

players with whom the interaction takes place, is not 

the same in each of the rounds. This issue is ex-

pressed by the payoff function, which is being adjust-

ed according to the “evidence” i.e. the previous play. 

The paper is organized as follows. Section 2 

briefly describes the Dirichlet models of inference, 

presenting both the precise (PDM) and the imprecise 

(IDM) probability approach. The general interaction 

games of Morris are presented in Section 3. In Sec-

tion 4, we present the model of Imprecise Probability 

Interaction Games (IPIG), by upgrading the interac-

tion games with the elements from IDM. Some basic 

definitions are given and certain important issues are 

discussed. Finally, in Section 5 we conclude by dis-

cussing possible directions for further research. 

 

THE IMPRECISE DIRICHLET MODEL 

 IN A MULTIVALUE SAMPLING PROCESS 
 

The power of the traditional probability theo-

ry to represent epistemic uncertainty has certain lim-
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itations. For example, the distributions that are used 

in probability models cannot recognize the situation 

of complete ignorance, when there is a total lack of 

information about the studied object or system. Such 

situations are usually described by applying uniform 

distributions, expecting that they will be further up-

dated according to the new evidence. Still, the fact is 

that by introducing any form of distribution into the 

model, an extra knowledge has been added into the 

narrative.  

Imprecision can result from many different 

circumstances, such as: 

- not having enough data to determine a sin-

gle prior belief; 

- not being certain about the observation and 

measurement of data; 

- the data are not specific (for example, when 

the observed data set is an unknown part of a bigger 

subset of the total state space); 

- having several different opinions i.e. con-

flict or imprecision of the expertise; 

- outliers or errors occurring in statistical 

sampling models, etc. 

In this situations, imprecise probabilities 

(initial work by Walley, Fine, Kuznetsov) are de-

fined as models for behaviour under uncertainty that 

correspond, in general, to a set of probability 

distributions. The theory that deals with imprecise 

probabilities is completely based on classical proba-

bility. As a generic term, imprecise probability re-

fers to all mathematical models, both qualitative 

(imprecise) and quantitative (non-additive), that are 

not using sharp numerical measures for probability.  

There are many ways in which imprecision 

can be expressed. Among them are probability in-

tervals, sets of probability measures, lower and up-

per previsions, credal sets, belief functions, convex 

capacities, fuzzy measures. Although it might seem 

differently, all these models can be expressed in an 

equivalent manner by using lower and upper previ-

sions. Thus, the theory of lower and upper previ-

sions, introduced by Walley [4], provides the most 

general framework for incorporating imprecision in 

the models of decision-making. 

The lack of information can be overcome by 

applying the Imprecise Dirichlet Model (IDM). In-

stead of a single density, IDM considers a set of pri-

or densities on the parameter space. Having a set of 

densities instead of only one, the mathematical ex-

pectation for a measurable and bounded function 

with respect to all densities from this set will not be 

a single value, but a pair of lower an upper provi-

sions, obtained by considering infimum and supre-

mum values over the prior’s set. It should be noted 

that the IDM model allows coverage not only of lack 

of evidence but is also suitable for cases where con-

flicting information from different sources exists [5].  

First, let’s investigate the Precise Dirichlet 

Model (PDM). The use of Dirichlet distribution in 

probability updating models is very appropriate be-

cause, next to the fact that the set of these distribu-

tions is very rich, any prior distribution can be ap-

proximated by a finite mixture of Dirichlet distribu-

tions. An important statistical property of PDM is 

that the density functions constitute a conjugate fam-

ily with respect to multinomial likelihoods: if the 

prior is Dirichlet, the posterior distribution will also 

be a Dirichlet probability distribution. 

To formulate PDM, we observe N realizations 

of the m possible states i from the state space 

 1 m
   , ,  according to the standard multi-

nomial model. The probabilities for occurrence of 

each of the states from Ω are formalized as follows:

  
1

0 and 1
m

i i i i

i

P


      , . 

By defining ni to be the number of observa-

tions of the state ωi in N trials, we can construct a 

vector of random variables  1 m
n n n , , , 

1

m

j

j

n N


 . In the PDM with parameters s and 

 1 m
t t, , , the prior probability distribution for 

 1 m
   , ,  is given by the density function: 
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 

1

1

1

i

m
st
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i
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p s

st


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
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 , 

where  is the Gamma-function. The posterior dis-

tribution is given by the density function: 

  1

1

i i

m
n st

i

i

p n
 



    , 

which is also a Dirichlet distribution when multi-

plied by the multinomial likelihood function relative 

to n, with updated parameters N s  and
 

* * *

1( , , )mt t t , where    *

i i i
t n st N s   . 

The hyper-parameter s > 0 in the PDM deter-

mines the influence of the prior over the posterior 

distribution: the bigger its value, the greater is the 

uncertainty about the observations and consequent-

ly, the convergence of the upper and lower probabil-

ities will be slower, and the conclusions should be 

more cautious. The value of this parameter should 

not depend on the number m of all possible states of 
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nature or the total number N of observations. Walley 

[4] has defined s as the number of observations that 

will reduce the difference between upper and lower 

probabilities to half of its initial value. Smaller val-

ues of s will signify faster convergence with in-

creased precision of the conclusions, while for large 

values of s the conclusions will be weaker. Some 

authors adopt different value ranges for s, for exam-

ple: s > 0, s > 1, s  [1,2] etc.  

Each of the it  is the mean value of the respec-

tive i. In order to reliably choose a fixed value for 

ti, the experimental evidence should be extensive i.e. 

the value of N should be high. There are many situa-

tions where this is not possible. The alternative ap-

proach is to switch to the Imprecise Dirichlet Model 

(IDM), which takes into consideration all possible 

values for  0 1it ,  i.e. the entire interior of the m - 

dimensional unit simplex 
m . 

Now, if n(A) is the number of observations of 

the subset A of , then the predictive probability 

P(A,s) of A with the Dirichlet prior from PDM, rela-

tive to N, will be given as: 

sN

AtsAn
ntsAP






)()(
),,|( , where 





Ai

itAt


)( . 

This probability value can be maximized and 

minimized over  1, , m

mt t  , in order to obtain 

the posterior lower and upper predictive probabili-

ties of A: 

n( A)
P( A| n,s )

N s



,  

 
n( A) s

P( A| n,s )
N s





 

 

Hence, the probability for occurrence of some 

element (state) from A, will be a number from the 

interval between these two values. If it is not certain 

which of the states 
i

A 
 
have been observed,  

the lower and the upper bounds for the probability of 

A can still be estimated, taking into account all pos-

sible k = 1, …, M subsets of the state space  and 

all  1

m

m
t t Int , ,  from the interior of the m – 

dimensional unit simplex 
m : 

 

 
     k

k t

n A s t A
P A s min inf

N s

 



, ,  

 
     k

k t

n A s t A
P A s max sup

N s

 



, .  

Clearly, 
     

i

k k

i

A

n A n
 

  , where 
   k

n A   

is the number of observations of the enumerated 

combination of states k. The infimum value of 

 t A  is 0 and the supremum is 1 for all A   , 

while for A  we have a unique value 

  1t A  .  

For considering the minimum and the maxi-

mum of 
   k

n A , we divide the power set of  in 

three parts: the family F1 of subsets of A, the family 

F2 of sets B such that B A    and the family F3 

of sets that do not belong to 
1 2

F F . Then, setting 

ci to be the number of occurrences of the set Ai, we 

have: 

   
1

1
i

k
i

k
A F

min n A c




 
, ,M

,  and 

 

   
2

1
i i

k
i i

k
A F A A

max n A N c c


  

   
, ,M

.  

 

Choosing an interval in order to present im-

precision of knowledge or observations is suitable 

for several reasons. Statistical distributions need 

assumptions of distribution types, distribution pa-

rameters and a mapping from events to real values 

between 0 and 1. Fuzzy sets need assumptions of not 

only lower and upper bounds, but also membership 

functions. The interval on the other hand is present-

ed in a simple form, by a pair of numbers (the lower 

and the upper bound), is easily understandable and 

does not assume any kind of distribution. Given that 

the essence of epistemic uncertainty is the lack of 

knowledge, a representation with the least assump-

tion is the most desirable. 

 

INTERACTION GAMES 
 

When a large population of players interacts 

strategically, some encounters may be more likely to 

happen than others. From a game – theoretical per-

spective, this situation becomes interesting when it 

is assumed that the player cannot decide separately 

for each possible encounter (group of interacting 

players), but instead must choose a fixed strategy 

that will be played against all of them. This situation 

should not be confused for incomplete information 
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in games, which is a canonical way of modelling 

strategic environments in the presence of uncertainty 

about players' preferences, their beliefs about other 

player' beliefs about preferences, and so on. In inter-

action games, large populations of players interact 

strategically without uncertainty, but dealing only 

with subsets of the total population.  

The generalized interaction games have been 

defined by Morris [3]. They include a finite or a 

countably infinite population of players, each of 

which participates in a game with a random group (a 

subset) of other players. The convention in game 

theory is that the individual payoffs of all players 

depend on the strategic profile of the entire popula-

tion – in this case, of the group of participating play-

ers. Interaction games have two more conventions:  

(i) in each of the repeated encounters, the 

player should choose the same strategy, and 

(ii) the final payoff will not depend on the 

strategies of the non-participating players. 

Interactions have weights, and the equilibrium 

of the interaction game is a strategic profile that en-

ables each player to maximize the weighted sum of 

payoffs from each interaction. The definition of the 

equilibrium in general interaction games corre-

sponds to the standard Nash Equilibrium in games 

with incomplete information [2]. 

Below we briefly present the formal model of 

general interaction games. 

A population X of players is observed, which 

is finite or possibly countably infinite. For each 

player xX, a set Ax of actions (pure strategies) xa  

of x  for the standard strategic form game is given, 

and a payoff function :xu A R  is defined over the 

product space 
x

x
A A


 

X
. The individual mixed 

strategies x of x are defined by probability distribu-

tions over Ax i.e. x xA   . If the strategic set Ax is 

infinite, then it is agreed that the mixed strategies 

should have a finite support. Mixed strategy profiles 

that include all players can be represented by vectors 

 x x X
   . 

In the interaction game, each player can be 

involved with a random group of other players. The 

possible interaction groups are described by a set I  

of subsets from X (elements of the power set 2X
), 

such that the elements of an arbitrary set from I  are 

the participating players in a single (one shot) game. 

The elements of I  are called interactions. In addi-

tion, Ix denotes the set of interactions of the player 

xX, 

 ,xI Q Q I x Q   . 

Clearly, xx X
I I


 . It can be agreed that 

the cardinality of all elements of I  is not less than 

2, in order to exclude the degenerate cases of the 

‘zero player’ games and games with only one player, 

which is a classical case of decision-making. Further 

on, we will denote pure and mixed strategies that are 

played within an interaction Q by ( , )a Q  and 

( , )Q  respectively. 

The likelihood of a particular interaction to ef-

fectuate is defined by a weight function 

:P I  R , such that for all x X
 
it holds that 

0 ( )
Q Ix

P Q


   . The last condition ensures that 

each player will participate in at least one interac-

tion, but also that the total participation of the player 

in different interactions will be bounded. 

Now, the pure strategy payoff for the player x 

can be defined as a weighted sum of the payoffs xu  

from the individual interactions, depending on the 

chosen pure strategy a: 

:x x
x

v ( a ) A A


  
X

R , defined by 

( ) ( ) ( , )x x

Q Ix

v a P Q u a Q


  . 

For the latest sum to be well defined, it is as-

sumed that the payoffs
 

( , )xu a Q
 
are bounded for all 

x. Similarly, the payoff that x receives from a mixed 

strategies profile  that was played in the interaction 

Q, can be defined as: 

 

( ) ( ) ( , )

x

x x

Q I

v P Q u Q


   ,  where 

( , ) ( ) ( ,Q)

x

x Q y y x

a y X

u Q a u


 
    
 
 

  . 

 

The general class of interaction games allows 

a unified representation of several other classes 

(such as incomplete information, local interaction 

and random matching games), by capturing their 

common structural elements. A dynamic interpreta-

tion of the model with continuum of players, has 

also been formulated and discussed [3]. The com-

mon structure of interaction games helps in better 

understanding each of the separate classes of games. 

 

THE PROPOSED MODEL 
 

In this section, we define the imprecise prob-

ability model of a repeated interaction game, by in-
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troducing Walley’s formulation into the general 

class of interaction games as defined by Morris. A 

repeated game is an extensive form game that con-

sists of a number of repetitions of some base game, 

called stage game. Thus, the stage game is a normal 

(one shot) game in which players act simultaneous-

ly. In the proposed model, each player chooses a 

strategy, while repeatedly faced with uncertainty 

about the set of participating players (opponents) 

that are involved in the interaction. The uncertainty 

comes from not having ex-ante information about 

the group of players (a subset of the total set of 

players that participate in the game) that will interact 

in the next stage. In response to this situation, the 

states of nature are presented by the interaction sub-

sets of players and the IDM model is applied to ex-

press the uncertainty. 

Definition 1. The model of an Imprecise 

Probability Interaction Game (IPIG) consists of: 

i. a set of players X; 

ii. a set of pure strategy profiles 

x
Xx

AA

 ; 

iii. a payoff function  
Xxxvv




 
defined on 

A; 

iv. a finite set of interactions 

 1,...,jI Q j m   (the state space); 

v. an imprecision parameter s. 

In addition, we make some structural assump-

tions and clarifications. 

A1. Each player x interacts within sets of 

players. The set of all interactions of x is denoted by 

Ix and it is a subset of I. 

A2. The sets X, A and I and the payoff v are 

common knowledge. 

A3. The players are not sure about the interac-

tion they will be involved in. 

A4. The total payoff received by a player x is 

the sum of the payoffs from each of the previously 

participated interactions. 

A5. At each stage, only one interaction from I 

can take place. 

With the above settings, the IPIG model is a 

tuple    X ,A,v,I ,s  representing an upgrade of the 

general interaction game that incorporates uncertain-

ty. The individual mixed strategies are defined in the 

usual way, as are the combined profiles of pure and 

mixed strategies.  

Let’s suppose that there are total of m interac-

tion groups,  card I m , and that the elements 

(interactions) Qj (j = 1, ..., m) from I are appropriate-

ly indexed. Since the probability of a player x to ob-

serve a particular interaction xQ I  is imprecise, 

the payoff function cannot be deterministically for-

mulated. Instead, we will define lower and upper 

limits of the expected payoff, using the previously 

discussed IDM.  

Definition 2. For a mixed strategy α, the total 

expected payoff of player x with respect to the prob-

ability distributions over the interaction’s set I is the 

weighted sum of the payoffs from all interactions of 

x when α is played, integrated over the distribution 

space 
m : 

 
1

( ) ( , ) ( )x x j j

m

m j

Ev v Q p d


      . 

Here π  has the precise multinomial Dirichlet 

distribution over I, π j  is the probability of Qj ac-

cording to π , and ( , )x jv Q  denotes the payoff of x 

from an engagement in the interaction Qj when the 

strategy profile α was observed.  

The subjective probability p over the unit 

simplex I  (a second-order probability over I) ex-

presses the ambiguous attitude of the player, i.e. the 

subjective uncertainty about the "true" probability 

π . We have: 

j

1

1

( ) ( , ) ( )

( , )

x x j

x j p j

m

mj

m

j

Ev v Q p d

v Q E

 



      

  

 



, 

where p jE   is the expected value of j  in respect 

to the probability p that the particular distribution , 

of which j  is a component, will be observed.        

According to the pervious discussions related 

to the lack of evidence, the expected value for the 

probability π j  for observing Qj with respect of 

( )p   can be estimated by
 sN

stn
E

jj
jp




 , which 

leads to the following expression: 

1

( ) ( , )
m

j j

x x j

j

n st
Ev v Q

N s


   


 .       (1) 

The ambiguity about the parameters that are 

applied in (1) imposes payoff concerns and moti-

vates an ambiguity averse approach in search for a 

possible strategic advantage, when faced with the 

uncertain interaction set. As before, for the purpose 

of eliminating the hyper-parameter t, we introduce 
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intervals for the expected payoff vx() by accounting 

all values of  1

m

m
t t  , ,  in (1): 

( ) inf ( )x xmt
E v Ev


   , 

( ) sup ( )x x
mt

E v Ev


   . 

Consequently, the payoff function vx of x will 

be presented as an interval: 

( ), ( )x xEv Ev  
 

. 

The interval-valued expected payoffs can be 

compared according to different criteria. Among 

them are: the criterion of maximality, the concept of 

admissibility, the ambiguity aversion approach etc. 

In order to define a solution concept for a game, a 

specific criterion should be chosen. Here, we refer to 

the pessimistic (lower limit) payoff evaluation and 

define the strict ambiguity aversion under the previ-

ously described circumstances. Ambiguity averse 

behavior is often viewed as a robust response to 

doubts about beliefs. Under strict ambiguity aver-

sion every strategy is evaluated by its minimal ex-

pected payoff, allowing the interval-valued expecta-

tions to be replaced by the correspondent lower in-

terval limits. 

In defining the expected ambiguity averse 

payoff for a given mixed strategy, we follow a rep-

resentation approach given in [7]. 

Definition 3. The player x’s payoff under a 

mixed strategy profile  and strict ambiguity aver-

sion in a repeated game is defined as: 

0

1

m
k

,x k

k

cs
V V V

N s N s




   
 

 ,    (2) 

where N is the number of stage games in the repeat-

ed game, ck is the number of occurrences of the in-

teraction Qk,  
mi x j

j
V min v ,Q


   for 1i ,...,n , 

and  0
1

x j
j ,...,m

V min v ,Q


  .  

This definition takes into account all payoffs 

from previous stage games, thus it is history-related 

and involves an element of learning. 

Next, we define a Nash equilibrium solution 

concept for a repeated imprecise interaction game 

under strict ambiguity aversion. This definition im-

plicitly involves an updating assumption that takes 

into consideration the observed play and the re-

ceived payoffs from the previous stage games. It 

should be noted here that the described situation dif-

fers from the standard repeated game model, where 

the stage game is always the same and consequently, 

the circumstances supporting a Nash equilibrium 

play remain invariable. In our model, the situation 

changes with the history since interactions may 

vary, with the results from these changing interac-

tions of the previous rounds being incorporated into 

the payoff function. 

Definition 4. The strategy profile 
* A   

is an ambiguity averse Nash equilibrium of a stage 

game in the imprecise probability interaction game 

(X, A, v, I, s), if for all xX and all mixed strategy 

profiles A , it holds that: 

, ), ( ,x xx x
V V 

  


  
. 

Here, 
*

x  denotes the oponents’ strategy 

profile for the player x within the strategy profile 
 , while 

x  is an arbitrary strategy of x. The equi-

librium definition requires that given the expected 

payoff (2), each of the players best responds to the 

strategies of all other players in the game. To the 

extent that there is a lack of evidence to precisely 

define the Dirichlet prior over the state space, the 

ambiguity related to its parameters translates into 

ambiguity about the equilibrium play. By applying 

ambiguity aversion to the parameter t (more precise-

ly, a pessimistic approach by endorsing minimum 

payoff values) the payoff function (2) incorporates 

only one parameter - namely s, whose value in gen-

eral may not be shared by all players. In case there is 

a common belief about the value of s, the defining 

solution of each separate stage game will coincide 

with a classical Nash equilibrium of a normal form 

game. We will formalize this discussion in the fol-

lowing theorem. 

Theorem. Let G be a repeated game for the 

finite imprecise probability interaction game 

 X ,A,v,I ,s  with finite population of players. If 

for the first N rounds in G, there is a common belief 

about the value of the parameter s of the Dirichlet 

prior over the set of all possible interactions, then 

there exists a (mixed) ambiguity averse Nash equi-

librium for G in the N - stage game and it is a Nash 

equilibrium sequence of ambiguity averse Nash 

equilibriums from each of the first N rounds. 

The idea underlying this theorem and its proof 

comes directly from the classical result for equilibria 

existence in (complete information) finite strategic 

form games. Having that any sequence of stage-

game Nash equilibria is a subgame-perfect equilib-

rium (SPE) in a finite repeated-game (i.e. it is a 

Nash equilibrium in every subgame of the original 

game) [8], this theorem also ensures the existence of 

a SPE in this model of imprecise probability interac-

tion games. 
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The existence of a common belief about the 

probability distributions is an essential assumption 

for the analysis. Depending on the beliefs that play-

ers hold for the unknown elements (probability dis-

tributions, parameters), ambiguity aversion may ex-

pand, shrink or simply change the equilibrium set. 

Holding payoffs and the structure of the underlying 

game fixed, ambiguity aversion may expand the set 

of equilibria relative to the groups that share a com-

mon belief about distributions. Without this re-

striction (i.e. taking into account all possible distri-

butions), ambiguity aversion will not affect the equi-

librium set [6].  

As previously discussed, it is not necessary 

for the value of the parameter s to be identical for all 

players, as long as its individual estimations are 

common knowledge. Alternatively, if this is not the 

case i.e. players have private estimations for s that 

are not publicly known, a Bayesian game can be 

considered where a player could analyze the game 

conditioning on various players’ types, where the 

prior probability distribution over types is assumed 

to be common knowledge. When appropriate, this 

can be presented by enlarging the interaction set I in 

the game model. The result would be a Bayesian 

(Nash) equilibrium (BNE), a straightforward exten-

sion of the Nash equilibrium which depicts the un-

certainty about the parameters and the way in which 

players react to that uncertainty. In BNE, each type 

of player chooses a strategy that maximizes ex-

pected utility given the actions of all types of other 

players and their beliefs about other players’ types. 

 

FURTHER RESEARCH CONSIDERATIONS 
 

In this paper, we have introduced an impre-

cise Dirichlet model for general interaction games. 

In order to deal with the lack of evidence (ex-ante 

information), an ambiguity averse attitude of the 

players is incorporated into the payoff function. This 

approach ensures the existence of a (sequential) 

Nash equilibrium for the N – stage game, composed 

of individual Nash equilibria for each separate 

round. In essence, being a combination of changing 

interactions, uncertainty and ambiguity, the model 

raises many research questions. 

There are various directions in which the 

analysis of this game model can unfold, each refer-

ring to different issues and considerations. To begin 

with, ambiguity, unlike fundamental uncertainty, 

may disappear with the passage of time simply be-

cause the increasing evidence will provide means for 

improved estimation of the unknowns, in this case 

the parameters of the applied IDM. While consider-

ing new evidence, the strict ambiguity criterion that 

is applied to game payoffs can easily prove to be 

over-pessimistic. For this reason, more sophisticated 

representations of the interval-valued expected pay-

offs that consider players’ attitude towards ambigui-

ty are desirable.  

Possible modifications of the model can ac-

count for different payoff functions that depart from 

the ambiguity – averse standpoint or are adjusted to 

an infinite repeated game model that incorporates a 

discount factor. Another obvious possibility is to 

consider a replacement of the imprecise Dirichlet 

model with a different type of uncertainty presenta-

tion such as, for example, belief functions of the 

Dempster – Shafer theory of evidence. The later is 

actually a generalization of probability theory 

which, by assigning probability to sets (of events) 

instead of singletons, enables a more abstract ap-

proach towards evidence at hand. Moreover, if the 

available evidence permits assignment of precise 

probabilities to single events, the Dempster – Shafer 

theory will seize down to the traditional probabilistic 

model. 

The proposed model may be analyzed more in 

detail in reference to subfamilies of the generalized 

interaction games, such as random matching games 

or local interaction games. The influence of the pa-

rameter s on the equilibrium behavior could be an-

other point of interest. Finally, complementing the 

assumption of ambiguity aversion with the assump-

tion of dynamic consistency, which can lead to equi-

librium sets of games with ambiguity averse players 

coinciding with the equilibrium sets of Bayesian 

games [9], can also be considered. 
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МОДЕЛ НА НЕПРЕЦИЗНА ВЕРОЈАТНОСТ ВО ПОВТОРЕНИ ИГРИ НА ИНТЕРАКЦИЈА 
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Воведуваме модел на непрецизна веројатност кај општите игри на интеракција, врз основа на фамилија 

мултиваријантни распределби на веројатност на Дирихле. Притоа, отсуството на претходна информација е 

искажано преку аверзија кон повеќезначност кај играчите, која е вградена во функцијата на добивка. 

Дефиниран е Нешов еквилибриум со аверзија кон повеќезначност во повторената игра на интеракција, кој се 

состои од Нешови еквилибриуми на секоја од рундите и утврдено е неговото постоење, врз основа на 

класичната теорија. Клучна претпоставка во анализата е општото верување за распределбите на веројатност во 

моделот на Дирихле. На крајот, дадени се насоки за идни истражувања. 

 

Клучни зборови: игра; интеракција; непрецизна веројатност; аверзија кон повеќезначност; Нешов 

еквилибриум 


